SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2020

PART III

SUBJECT PHYSICS

CODE SY-24

TOTAL SCORE – 60

Qn.no	Sub qn	Answer key	Score	Total
1		(c) doubled		1
2		(a) Straight line		1
3		(a)1000V		1
4		(a) light ray is travelling from denser medium to rarer medium		1
5		(b)total internal reflection		1
6		(b)not different from		1
7	(a)	F=qE +q F=qE Correct marking of direction / equation F=qE (score 1 for any part)	1	2
	(b)	$\tau = pxE$ or $\tau = pEsin\theta$	1	
8	(a)	$\oint B. dl = \mu_0 I$ or defintion	1 1/2	2

	(b)	OR If any part of either (a) or(b) is correct give $1^{1/2}$ score	1/2	
9		Non uniform field OR any related attempt		2
		$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{m}{r^3} = 10^{-7} \mathbf{x} \frac{0.4}{0.5^3} = 3.2 \mathbf{x} 10^{-7} \mathrm{T} $ (2 score)		
10		$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{2m}{r^3} = 6.4 \times 10^{-7} \text{ T}$ (2 score) Any one equation 1 mark solution 1 mark unit not necessary (if 2 equations are correct give 2 mark)		2
	(a)	n= 1.47	1 1/2	
11	(b)	No OR (if any one part of (a) or (t) is correct give $1^{-1}/_{2}$ score)	1/2	2
12		Blue scatters more / By Rayleigh's scattering law / Blue has shorter wavelength / $I \alpha \frac{1}{\lambda^4}$		2
13		i Nuclear fission Generally possible for nuclei with high atomic number ii Nuclear fussion Nuclei with low atomic number iii Transition between Hydrogen spectrum atomic energy levels		2

		iv Electron emission from Beta decay		
		nucleus		
	(a)	OR Rectifier circuit	1	
14	(b)	Resistor may be included	1	2
	(a)	A- ground wave, B – space wave ,C- sky wave	1 1/2	
	(b)	Ionosphere cannot reflect these signals / high frequency /	1 / 2	
15		small wavelength / penetrate through ionosphere / any related answer	1/2	2
16	(a)	Caussian surface or direction 1 score	1	3
	(b)	Gaussian surface or direction 1 score		_
		$ \oint E. ds = \frac{q}{\epsilon_0} / \text{Gauss's law 1 score} $ $ E \times 2\pi r l = \lambda \frac{l}{\epsilon_0} \qquad (1/2 \text{ score}) $ $ E = \frac{\lambda}{2\pi\epsilon_0 r} \qquad (1/2 \text{ score}) $	2	
17	(a)	Figure 1 – parallel, figure 2 - series	1	3

	(b)	Figure 1 – parallel	1/2	
	(c)	Derivation of parallel combination	1 1/2	
	(a)	Any one law or equation 1 score(1+1)	2	
	(b)	Both proportional to square of respective field strength OR		
18		Any equation of energy $\frac{1}{2}cv^2$ or $\frac{1}{2}Li^2$ OR	1	3
		energy density $\frac{\epsilon_0 E^2}{2}$ or $\frac{B^2}{2\mu_0}$ (If (b) part alone is correct give 1 $\frac{1}{2}$ score)		
	(a)	$E_x = E_0 \sin(kz - \omega t)$ $B_y = B_0 \sin(kz - \omega t)$	1	
19	(b)	Radio waves are produced by accelerated motion of charges / Radio waves are used for radic, (7) or communication system / micro waves are produced by special vacuum tubes / any one use like oven or sircuaft control (any one answer above 1 score)	2	3
	(a)	Object distance - OO , Lyage distance - OQ_1	1	
20	(b)	$\frac{1}{u} - \frac{1}{v} = \frac{1}{f} (1 \text{ score})$ $1 - \frac{v}{u} = \frac{v}{f}$ $m = 1 + \frac{D}{f} (1 \text{ score})$ OR $m = \frac{D}{f} / m = \frac{v}{u} (1 \text{ score})$	2	3
21		Lyman,Balmer,Paschen		3
	(a)	i) 176 ii) 72	1	
22	(b)	Statement or equation of radioactive decay law	1	3
	(c)	$T_h = 0.693 \ T_m \ \mathrm{OR} \ T_h = T_m \ln 2$ T_h - half life, T_m - mean life	1	

23	(a)	Definition of modulation / figure showing modulation	1	
	(b)	Any two reasons like i) Power is inversely proportional to		3
23		square of wavelength ii) Insufficient antena length	2	5
		iii) Mixing up of signals ,etc		
	(a)	Farad	1/2	
	(b)	(Both series and parallel can be considered as in english and		
		malayalam version of question)	$\frac{1}{2}$	
		In series $C = \frac{12}{13} pF$ / In parallel $C = 9 pF$	_	
24	(c)	In series $Q = Cv = \frac{12}{13} \times 10^{-12} \times 100 = \frac{12}{13} \times 10^{-10} \text{ F}$		4
		OR		
		In parallel $Q_1 = C_1 v = 2x \ 10^{-10} F$, $Q_2 = 3x \ 10^{-10} F$,	3	
		$Q_3 = 4x \ 10^{-10} F$		
		$(1 \frac{1}{2})$ may be given to (b) part if no score for (c)		
	(a)	Derivation		
		(Equation like $\tau = m \times P / \tau = mB\sin\theta / \tau = NIAB\sin\theta$	$2^{1}/_{2}$	
		Figure (give 1 score))		
2.5	(b)	If number of turns doubles as $\frac{nAB}{c}$		4
25		But voltage sensitivity remains constant since resistance		4
		doubles - $\frac{nAB}{cR}$	$1^{1}/_{2}$	
		(definition of current sensitivity or voltage sensitivity can		
		give 1 score)		
	(a)	Minimum energy needed for the electron to escape from	1	
		metal surface	1	
	(b)	$hv = Ø_0 + \frac{1}{2} mv^2$ / Any such equation including $E = hv$		
26		(1 score)	1 1/2	4
		$\frac{1}{2}$ mv ² = hv - \emptyset_0 = 0.344 eV / = 0.55 x 10 ⁻¹⁹ J	1 /2	
		(Solving without writing 1st equation can give full score)		
	(c)	$\frac{1}{2} m v^2 = e V_0$	1 1/2	

		$V_0 = \frac{0.55 \times 10^{-19}}{1.6 \times 10^{-19}} = 0.34 \text{ V}$		
		(equation only give 1 score , answer only 1 score)		
	(a)	Derivation of $\frac{R_2}{R_4} = \frac{R_1}{R_3} / \frac{R_1}{R_2} = \frac{R_3}{R_4}$ OR		
27		Any correct derivation using other symbols	4	5
		(figure only one mark)		
	(b)	Metre bridge	1	
	(a)	Any one factor like resistance ,capacitance ,inductance,	1	
	(4)	frequency of applied AC	1	
,	(b)	Impedance diagram OR Phasor diagram OR cos Ø OR		
28		$\cos \emptyset = \frac{R}{Z}$	1	5
	(c)	Any correct equation 1 score		
		$Z = \sqrt{9 + 16} = 5 \text{ 0hm}$	3	
		(Answer only give 1 score, unit no necessary)		
	(a)	Width of band decreases from the center / any related	1	
		explanation		
	(b)	If yellow light is used band width increases OR the pattern	1	
		expands / any related explanation		
29	(c)	$X_n = \frac{n\lambda D}{d}$, $\lambda = \frac{X_{nd}}{nD} = \frac{10^{-2} \times 0.03 \times 10^{-2}}{4 \times 1.5} = 500 \text{ nm}$		5
		(Any correct related equation like $\beta = \frac{D\lambda}{d}$ give 1 score)	2	
		(if (d) part is not considered 3 score can be given to (c) part)		
	(d)	Any definition of limit of resolution	1	
	(a)	I – cut of region, II – active region, III – saturation region	1 1/2	
	(b)	Region I	1/2	
30	(c)	$\beta = \frac{I_c}{I_b} (1 \text{ score})$		5
		$I_{c} = \frac{2}{2000} = 1 \text{ mA}$	2	
		$I_b = \frac{I_c}{\beta} = \frac{1 mA}{100} = 10^{-5} A$		

	(for any correct equation for β give 1 score If part (d) is not correct give 3 score to (c)part)		
(d)	(if there is errors in previous parts of this question, working of transistor with figure can give 2 score and 1 score if there is figure only) Forward biased emitter base junction send majority carriers from emitter to base and reverse biased collector can collect these majority carriers from base	1	

Sajukumar S V - 9446903789

Suji G - 9447125197