SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2020

PART III

SUBJECT PHYSICS

CODE SY-24

TOTAL SCORE - 60

\begin{tabular}{|c|c|c|c|c|}
\hline Qn.no \& Sub qn \& Answer key \& Score \& Total

\hline 1 \& \& (c) doubled \& \& 1

\hline 2 \& \& (a) Straight line \& \& 1

\hline 3 \& \& (a) 1000 V \& \& 1

\hline 4 \& \& (a)light ray is travelling from denser riectiom to rarer medium \& \& 1

\hline 5 \& \& (b)total internal reflection \& \& 1

\hline 6 \& \& (b)not different from \& \& 1

\hline 7 \& (a)

(b) \& Correct marking of direction / equation $\mathrm{F}=\mathrm{qE}$ (score 1 for any part)

$$
\boldsymbol{\tau}=\mathbf{p x E} \text { or } \tau=\mathrm{pE} \sin \theta
$$ \& 1

1 \& 2

\hline 8 \& (a) \& $\oint \boldsymbol{B} \cdot \boldsymbol{d} \boldsymbol{l}=\boldsymbol{\mu}_{\mathbf{0}} \mathrm{I}$ or defintion \& $1^{1 / 2}$ \& 2

\hline
\end{tabular}

	(b)	 If any part of either (a) or(b) is correct give $1 / 2$ score			$1 / 2$	
9		Non uniform field OR any related attempt				2
10		$\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}=10^{-7} \times \frac{0.4}{0.5^{3}}=3.2 \times 10^{-7} \mathrm{~T}$ (2 score) OR $\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{2 m}{r^{3}}=6.4 \times 10^{-7} \mathrm{~T}$ (2 score) Any one equation 1 mark solution 1 nari unt not necessary (if 2 equations are correct give 2 mark)				2
11	(a) (b)	No OR (if any one part of a) is correct give $11 / 2$ score)			$11 / 2$ $1 / 2$	2
12		$\begin{aligned} & \text { Blue scatters mote By Rayleigh's scattering law / } \\ & \text { Blue has shorter wavelength / I } \boldsymbol{\alpha} \frac{\mathbf{1}}{\lambda^{4}} \end{aligned}$				2
13		\square	A	B		2
		$\begin{array}{\|l\|} \hline \mathrm{i} \\ \hline \end{array}$	Nuclear fission	Generally possible for nuclei with high atomic number		
		ii	Nuclear fussion	Nuclei with low atomic number		
		iii	Transition between atomic energy levels	Hydrogen spectrum		

		iv	Electron emission from nucleus	Beta decay		
14	(a)	Rectifier circuit			1	2
	(b)	Resistor may be included			1	
	(a)	A- ground wave, B - space wave ,C- sit wave			$11 / 2$	2
15	(b)	Ionosphere cannot reflect these sigha. / high frequency / small wavelength / penctrationgh ionosphere / any related answer			$1 / 2$	
16	(a)	Gaussian surface or direction 1 score			1	3
	(b)	$\begin{array}{lr} \hline \oint \boldsymbol{E} . \boldsymbol{d s}=\frac{\boldsymbol{q}}{\epsilon_{0}} / & \text { Gauss's law } 1 \text { score } \\ \mathbf{E} \times 2 \pi \mathbf{r l}=\lambda \frac{\boldsymbol{l}}{\epsilon_{0}} & (1 / 2 \text { score }) \\ \mathbf{E}=\frac{\lambda}{2 \pi \epsilon_{0} r} & (1 / 2 \text { score }) \end{array}$			2	
17	(a)	Figure 1 - parallel, figure 2 - series			1	3

	(b)	Figure 1 - parallel	1/2	
	(c)	Derivation of parallel combination	$1^{1 / 2}$	
	(a)	Any one law or equation 1 score($1+1$)	2	
18	(b)	Both proportional to square of respective field strength OR Any equation of energy $\frac{1}{2} \mathbf{c} v^{2}$ or $\frac{1}{2} \mathbf{L} \boldsymbol{i}^{2}$ OR energy density $\frac{\epsilon_{0} E^{2}}{2}$ or $\frac{B^{2}}{2 \mu_{0}}$ (If (b) part alone is correct give $1 / 2$ score)	1	3
	(a)	$\begin{aligned} & E_{x}=E_{0} \sin (k z-\omega t) \\ & B_{y}=B_{0} \sin (k z-\omega t) \end{aligned}$	1	
19	(b)	Radio waves are produced by accelerated motion of charges / Radio waves are used for radio, [./ or communication system / micro waves are produced by special vacuum tubes / any one use like oven or iretaft control (any one answer above :ser e)	2	3
	(a)	Object distance - 0 , Inage distance - $\mathrm{O} Q_{1}$	1	
20	(b)	$\begin{aligned} \frac{1}{u}-\frac{1}{v}=\frac{1}{\mathrm{f}} \quad(1 \text { score }) \\ 1-\frac{v}{u}=\frac{\mathrm{v}}{\mathrm{f}} \\ \mathrm{~m}=1+\frac{D}{\mathrm{f}} \quad(1 \text { score }) \\ \mathrm{m}=\frac{D}{\mathrm{f}} / \mathrm{m}=\frac{v}{u} \quad(1 \text { score }) \end{aligned}$	2	3
21		Lyman,Balmer,Paschen		3
22	(a)	i) 176 ii) 72	1	3
	(b)	Statement or equation of radioactive decay law	1	
	(c)	$\begin{aligned} & T_{h}=0.693 T_{m} \text { OR } T_{h}=T_{m} \ln 2 \\ & T_{h} \text {-half life }, T_{m}-\text { mean life } \end{aligned}$	1	

23	(a)	Definition of modulation / figure showing modulation	1	3
	(b)	Any two reasons like i) Power is inversely proportional to square of wavelength ii) Insufficient antena length iii) Mixing up of signals, etc	2	
24	(a)	Farad	$1 / 2$	4
	(b)	(Both series and parallel can be considered as in english and malayalam version of question) In series $C=\frac{12}{13} \mathrm{pF} /$ In parallel $\mathrm{C}=9 \mathrm{pF}$	$1 / 2$	
	(c)	In series $\mathrm{Q}=\mathrm{Cv}=\frac{12}{13} \times 10^{-12} \times 100=\frac{12}{13} \times 10^{-10} \mathrm{~F}$ OR In parallel $\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{v}=2 \times 10^{-10} \mathrm{~F}, \mathrm{Q}_{2}=3 \times 10^{-10} \mathrm{~F}$, $Q_{3}=4 x 10^{-10} F$ ($1 / \frac{1}{2}$ may be given to (b) part if no score for (c))	3	
	(a)	Derivation (Equation like $\tau=m \times \mathrm{B} \quad \tau=\mathrm{m} \operatorname{Bin} \theta / \tau=\mathrm{NIAB} \sin \theta$ Figure (give 1 score))	$21 / 2$	
25	(b)	If number of turns do But voltage sen̂ititvity remains constant since resistance doubles - $\frac{\mathrm{nAB}}{\mathrm{cR}}$ (definition of current sensitivity or voltage sensitivity can give 1 score)	$11 / 2$	4
26	(a)	Minimum energy needed for the electron to escape from metal surface	1	4
	(b)	$\mathbf{h} \boldsymbol{v}=\emptyset_{0}+\frac{1}{2} \mathbf{m v}^{\mathbf{2}} /$ Any such equation including $\mathbf{E}=\mathbf{h} \boldsymbol{v}$ (1 score) $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{hv}-\emptyset_{0}=0.344 \mathrm{eV} /=0.55 \times 10^{-19} \mathrm{~J}$ (Solving without writing $1^{\text {st }}$ equation can give full score)	$11 / 2$	
	(c)	$\frac{1}{2} \boldsymbol{m v}^{2}=\mathrm{eV} \mathrm{~V}_{0}$	$11 / 2$	

		$V_{0}=\frac{0.55 \times 10^{-19}}{1.6 \times 10^{-19}}=0.34 \mathrm{~V}$ (equation only give 1 score, answer only 1 score)		
27	(a)	Derivation of $\frac{\mathrm{R}_{2}}{R_{4}}=\frac{\mathrm{R}_{1}}{R_{3}} / \frac{\mathrm{R}_{1}}{R_{2}}=\frac{\mathrm{R}_{3}}{R_{4}}$ OR Any correct derivation using other symbols (figure only one mark)	4	5
	(b)	Metre bridge	1	
28	(a)	Any one factor like resistance ,capacitance ,inductance, frequency of applied AC	1	
	(b)	Impedance diagram OR Phasor diagram OR $\cos \emptyset$ OR $\cos \emptyset=\frac{R}{Z}$	1	5
	(c)	Any correct equation 1 score $\mathrm{Z}=\sqrt{9+16}=50 \mathrm{hm}$ (Answer only give 1 score, unit mowecessary)	3	
29	(a)	Width of band decreases fron the center / any related explanation	1	5
	(b)	If yellow light is use the pattern expands / an rerated explanation	1	
	(c)	$\mathrm{X}_{\mathrm{n}}=\frac{\mathrm{n} \lambda \mathrm{D}}{\mathrm{~d}} \quad, \quad \lambda=\frac{X_{n d}}{n D}=\frac{10^{-2} \times 0.03 \times 10^{-2}}{4 \times 1.5}=500 \mathrm{~nm}$ (Any correct related equation like $\beta=\frac{D \lambda}{d}$ give 1 score) (if (d) part is not considered 3 score can be given to (c) part)	2	
	(d)	Any definition of limit of resolution	1	
30	(a)	I - cut of region, II - active region, III - saturation region	$11 / 2$	5
	(b)	Region I	1/2	
	(c)	$\begin{aligned} & \boldsymbol{\beta}=\frac{\mathbf{I}_{\mathbf{c}}}{\mathbf{I}_{\mathbf{b}}}(1 \text { score }) \\ & \mathrm{I}_{\mathrm{c}}=\frac{2}{2000}=1 \mathrm{~mA} \\ & \mathbf{I}_{\mathbf{b}}=\frac{\mathbf{I}_{\mathbf{c}}}{\beta}=\frac{1 \mathrm{~mA}}{100}=10^{-5} \mathrm{~A} \end{aligned}$	2	

		(for any correct equation for β give 1 score If part (d) is not correct give 3 score to (c)part)		
	(d)	(if there is errors in previous parts of this question, working of transistor with figure can give 2 score and 1 score if there is figure only) Forward biased emitter base junction send majority carriers from emitter to base and reverse biased collector can collect these majority carriers from base	1	

Sajukumar S V - 9446903789
Suji G-9447125197

