Second Year Higher Secondary Model Examination 2024

Prepared by

Association of Chemistry Teachers

Thrissur District

Chemistry Answer Key

Qn No		Value Points	Scores	Total
		Qn No 1 to 5 (Answer Any 4) $4 \times 1 = 4$		
1		3	1	
2		Mercury cell / Dry cell	1	
3		Linkage Isomerism	1	4
4		SOCl ₂	1	
5		Vitamin C	1	
		Qn No 6 to 15 (Answer Any 8) $8 \times 2 = 1$	6	
6	i	van't Hoff factor: It is the correction factor introduced for abnormal molar mass calculated by colligative property methods. OR $i = \frac{\text{normal molar mass}}{\text{abnormal molar mass}} \text{ OR}$ $i = \frac{\text{observed colligative property}}{\text{calculated colligative property}} \text{ OR}$ $i = \frac{\text{otal no. of moles after association or dissociation}}{\text{total no. of moles before association or dissociation}}$	1	2
	ii	$KCl \rightarrow K^+ + Cl^ i = 2$	1	
7	i	A device which converts chemical energy to electrical energy	1	HSS 2
,	ii	$Zn Zn^{2+} Cu^{2+} Cu$	1	
8		Reactions which appear to be of higher order but actually follows first order kinetics are called pseudo first order reactions. eg. Acid hydrolysis of ester, inversion of cane sugar./ equations.	RY 1	2
9	i	Concentration of reactants, Temperature, Catalyst(Any two factors)	1/2+1/2	2
,	ii	Rate equation $r = k[NH_3]^0$ or $r = k$	1	
10	i	Alkyl chlorides or bromides + sodium iodide in dry acetone gives alkyl iodide. Or chemical equation	OGIAT TE	ION (
	ii	Arylhalides + sodium in the presence of dry ether gives diphenyl or chemical equation	1	2
11		Any two differences of S_N^1 and S_N^2 mechanism	1+1	2
12		On exposure to air in presence of light, chloroform undergoes oxidation to form poisonous carbonyl chloride or phosgene.		2
13		step 1: Dilution of molasses- water and enzymes are added for conversion of molasses into fermentable sugar or eqn step 2: molasses is fermented using yeast whereby sugar is converted to ethanol and CO ₂ or eqn Fermentation of Molasses	1 1	2
14		A- CH ₃ -OH (Methanol) B- H-COONa(sodium formate)	1 1	2
15	i	Benzene sulphonyl chloride (C ₆ H ₅ SO ₂ Cl)	1	
	ii	Primary amines react with Hinsberg reagent to form alkyl benzene sulphonamide which is soluble in alkali.	1	2

Qn		Value Points	Scores	tal				
N	0			Total				
	i	Qn No 16 to 26 (Answer Any 8) $8 \times 3 = 24$ The extra pressure that must be applied on the solution side to just stop osmosis.						
16		When a pressure greater than osmotic pressure is applied on the solution side,	1	3				
	ii	the direction of osmosis is reversed. Application :Desalination of seawater.	1					
	i	The conductivity of all ions produced by dissolving 1 mole of an electrolyte in water. $\Lambda_{\rm m} = \frac{1000K}{M}$	1					
17	ii	$\begin{array}{c} \text{11} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		3				
	iii	Debye-Huckel-Onsager equation $\Lambda_{\scriptscriptstyle m} = \Lambda_{\scriptscriptstyle m}^{\scriptscriptstyle 0} - A \sqrt{C}$	1					
18	i	$t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{5.5 \times 10^{-14}} = 1.26 \times 10^{13}$	1/2+1+ 1/2	3				
	ii	mol ⁻¹ L ⁿ⁻¹ s ⁻¹ mol ⁻¹ L s ⁻¹	½ 1					
10	i Due to d- d transition		1	2				
19	ii	$\mu = \sqrt{n(n+2)}$ $\mu = \sqrt{5(5+2)} = 5.92BM$	1 1	3				
		Step1:Chromite ore + $Na_2CO_3 + O_2 \rightarrow$ sodium chromate	1					
CAEMIS THRIS		Step 2: Sodium chromate $+ H_2SO_4 \rightarrow$ sodium dichromate Step 3: Sodium dichromate $+ KCl \rightarrow$	1	3				
	i	potassium dichromate Tetraamminedichloridocabalt(III) chloride	1					
21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	iii	cis isomer	1					
22	i	Double salt dissociate completely into component salts or ions in solutions. While in coordination compounds,the complex ion almost does not dissociate.or any one example of each	1					
	ii	A bidentate or polydentate ligand having two or more donor atoms attached to the same central metal ion and forms ring structure.						
	iii	Ethane-1,2-diamine(ethylene diamine/ en), oxalate ion or any two examples for bidentate ligand	1					

	Join Now: https://join.hsslive.in						ß.					
Q N		Value Points	Scores	Total		Qn No		Value Points	Scores	Total		
	i	Higher boiling point of alcohol is due to their ability to form inter molecular hydrogen bond.	1	1			iii	Solutions which boil at lower temperature than the boiling point of either component. It is shown by non-ideal solutions with positive deviation.	1			
23	ii	Phenols ionise in aqueous solution to give phenoxide ions. Both phenol and phenoxide ions are resonance stabilized,	1	3	3			Eg. for minimum boiling azeotrope The limiting molar conductivity of an	1			
	11	but phenoxide ion is more stabilized than phenol. Or sp² hybridized state of carbon in phenols.				28	i	electrolyte is the sum of the limiting molar conductivity of anion and cation. Applications a) Calculation of degree of dissociation, b) Calculation of				
	iii	Alkoxy group in ethers increases the electron density at ortho and para positions of the benzene ring due to +R effect.	1					dissociation constant. c) Calculation of molar conductivity of weak electrolytes. (any one)	1	4		
	i	Presence of two alkyl groups on ketone decreases the positive charge on carbonyl group due to +I effect. In aldehyde there	1		-		ii	$\Lambda_{\rm M} = \frac{1000\kappa}{\rm M}$ $\Lambda_{\rm M} = \frac{1000 \times 0.01148}{0.05} = 229.6 \rm Scm^2 mol^{-1}$	1			
		is +I effect of one alkyl group only. OR It is due to electronic and steric factors which is favourable for aldehyde		3 HSS				Ni is in the +2 oxidation state i.e., in d ⁸ configuration. There are four CN ⁻ ions. Thus, it can	1 ½			
24	ii	Clemmensen reduction OR Wolff-Kishner reduction Alcohols react with carboxylic acids and	1					either have a tetrahedral geometry or square planar geometry. Since CN ⁻ ion is a strong field ligand, it causes the pairing				
	iii	their derivatives in presence of a few drops mineral acid to form esters CH ₃ COOH+C ₂ H ₅ OH − H ₅ O ⁺ → CH ₃ COOC ₂ H ₅ +H ₂ O	1		SLiV	SLiV	E.IN®	i	of unpaired 3d electrons. It now undergoes dsp ² hybridization. Since all electrons are paired, it is			
	i	Aniline is subjected to diazotisation. Then Sandmeyer's reaction or Gattermann reaction is carried on benzene diazonium chloride. Or chemical equations	20 RY			29		diamagnetic. In case of [NiCl ₄] ²⁻ , Cl ⁻ ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired 3d electrons. Therefore, it undergoes sp ³ hybridization. Since there are 2 unpaired electrons in	1 ½	4		
25	ii	Acid amides on reaction with bromine in presence of alkali gives primary amine having one carbon atom less than the parent amide or equation or chemical	1	3				this case, it is paramagnetic in nature.				
	:	Amino acids which the human body cannot synthesise are called essential	1		-		ii	d orbitals of free ion $\frac{2/5 \Delta_o}{\text{spherical crystal field}}$ splitting of d orbitals	1			
26	i	amino acids and these must be supplied strongh diet. eg: valine,leucine or any two Globular Protein: Insulin,albumin (any one) Fibrous Protein: keratin,myosin (any one)		DCIATION (1/2+1/2EAGHE)F CHE R\$, Th	IRIS	Lucas Test: Anhydrous ZnCl ₂ in HCl is called Lucas reagent. With Lucas reagent, Tertiary alcohol gives sudden turbidity				
	ii					Secondary alcohol gives turbidity in few minutes. Primary alcohol gives turbidity only on heating		1 ½	4			
		Qn No 27 to 31 (Answer Any 4) $4 \times 4 = 1$ Solutions which do not obey Raoult's	16		30	30		30	ii	OH OH CHCI ₃ NaOH CHO	1 ½	4
27	i	law for all concentration and temperature ranges.	for all concentration and temperature 1 ges.				iii	phenol salicylaldehyde Benzoquinone or structure	1			
		Solvent-solute(A-B) interactions are stronger than solvent-solvent(A-A) and solute-solute(B-B) interactions.Example: Ethanol and acetone , Acetone and carbondisulphide etc (any one)	1	4			i	CH ₃ -CHCl-COOH (2- chloropropanoic acid)	1			
							ii	CH ₃ -CHCl-COOH is more acidic than CH ₃ -CH ₂ -COOH. It is due to electron withdrawing effect of Cl.	1 2	4		
	ii					31	iii	Reaction of ethanal/acetaldehyde with Grignard reagent followed by hydrolysis CH ₃ —CHO + CH ₃ —MgBr —>				
							111	$\begin{array}{cccc} \text{CH}_3 & \text{CHOMgBr} & \xrightarrow{\text{H}_2\text{O}} & \text{CH}_3 & \text{CH} & \text{OH} \\ & & & & & & \\ & & & & & & \\ & & & & $	2			